Pell hyperbolas in DLP–based cryptosystems
نویسندگان
چکیده
We present a study on the use of Pell hyperbolas in cryptosystems with security based discrete logarithm problem. Specifically, after introducing group structure over generalized (and also giving explicit isomorphisms classical hyperbolas), we provide parameterization both an algebraic and geometrical approach. The particular that propose appears to be useful from cryptographic point view because product arises set parameters is connected Rédei rational functions, which can evaluated fast way. Thus, exploit these constructions for defining three different public key ElGamal scheme. show our allows obtain schemes more efficient than ones finite fields.
منابع مشابه
On Pell, Pell-Lucas, and balancing numbers
In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers and the relationships between them. We also deduce some formulas on the sums, divisibility properties, perfect squares, Pythagorean triples involving these numbers. Moreover, we obtain the set of positive integer solutions of some specific Pell equations in terms of the integer sequences mentioned in the text.
متن کاملPell Numbers Whose Euler Function Is a Pell Number
We show that the only Pell numbers whose Euler function is also a Pell number are 1 and 2.
متن کاملThe Pell Equation
Leonhard Euler called (1) Pell’s Equation after the English mathematician John Pell (1611-1685). This terminology has persisted to the present day, despite the fact that it is well known to be mistaken: Pell’s only contribution to the subject was the publication of some partial results of Wallis and Brouncker. In fact the correct names are the usual ones: the problem of solving the equation was...
متن کاملPell ’ s Equation
An arbitrary quadratic diophantine equation with two unknowns can be reduced to a Pell-type equation. How can such equations be solved? Recall that the general solution of a linear diophantine equation is a linear function of some parameters. This does not happen with general quadratic diophantine equations. However, as we will see later, in the case of such equations with two unknowns there st...
متن کاملSimultaneous Pell equations
Let R and S be positive integers with R < S. We shall call the simultaneous Diophantine equations x −Ry = 1, z − Sy = 1 simultaneous Pell equations in R and S. Each such pair has the trivial solution (1, 0, 1) but some pairs have nontrivial solutions too. For example, if R = 11 and S = 56, then (199, 60, 449) is a solution. Using theorems due to Baker, Davenport, and Waldschmidt, it is possible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2022
ISSN: ['1090-2465', '1071-5797']
DOI: https://doi.org/10.1016/j.ffa.2022.102112